
The

State Machine Compiler

UptoData, Inc.

by
Eitan Suez

http://u2d.com/

2

About the Speaker

Eitan Suez is a Java programmer living and working
in Austin, Texas

Eitan is primarily known as the author of ashkelon,
an open source tool for Java API documentation

Eitan is an active member of the Austin Java Users
Group

Eitan maintains a weblog on http://java.net/

3

Primary Purpose

1. In General:

To learn how Finite State Machines (FSMs)
are useful for modeling stateful objects

 in a software system
2. Specifically:

To learn to implement such objects
in a clean and agile way

using the State Machine Compiler

4

Agenda

A. Uncle Bob’s Turnstile

B. Finite State Machines Basics

C. What is SMC?

D.Solving Turnstile using SMC

E. SMC In Detail

F.Examples

A simple turnstile

Description of the normal operation of a
turnstile:

1. Turnstile initially locked

2. A coin or ticket is inserted (event)

3. Triggers action: turnstile unlocks

4. A person passes through turnstile (event)

5. Triggers action: turnstile locks again

5

State Diagram

6

Locked Unlocked

coin/unlock()

pass/lock()

Complete Diagram

7

Locked Unlocked

coin/unlock()

pass/lock()

pass/alarm()

coin/thankyou()

Coding the turnstile

break into hands-on session

8

(first pass)

Discussion

Most implementations don’t think to separate
actions into neat little packages:

alarm / thankyou / unlock / lock

So, the first improvement is to go ahead and
perform this packaging:

1. put the code for each case in a separate method (the
action)

2. gather the collection of actions into an interface

This helps with action code getting in the way of seeing
the transition logic

9

More Issues

Difficult to clearly interpret conditional
logic. It’s difficult to read; you can get lost
in it. It’s error-prone.

Violates the Open-Closed Principle (OCP).
Extending the system requires modifying
existing code.

10

Let’s try the State Pattern

break into hands-on session

11

(second pass)

The State Pattern

Replace conditional logic by using polymorphism

The context class becomes much simpler; it
delegates transitions handling to its current state.

The code is cleaner.

12

Discussion

If you need to extend the system, say you
need to introduce a new state:

you add a new class
you don’t have to touch existing code

The state pattern respects the OCP:

software entities should be open for extension but
closed for modification

13

Issues with the State Pattern

1. The state logic is distributed across a
number of classes, and so there’s no single
place to see it all

2. Tedious to write

14

The state of affairs

Employing the state pattern is usually as far as most
people go

State diagrams are typically used only passively, in
our designs, and to help us understand the state
logic

Let’s go back to our diagram and discuss some
Finite State Machine (FSM) basics..

15

16

Agenda

A. Uncle Bob’s Turnstile

B. Finite State Machines Basics

C. What is SMC?

D.Solving Turnstile using SMC

E. SMC In Detail

F.Examples

Basic Terminology

17

Locked Unlocked

coin/unlock()

pass/lock()

pass/alarm()

coin/thankyou()

States

Transitions Actions

States, Transitions, and Actions

Other Concepts

Entry and Exit Actions
Actions performed every time we enter and exit a
state, respectively

Transition Guards
Conditions that must be met in order for transitions
to proceed

18

Transition Guard Example

Form Entry:

Fill out a form (in "Edit" state)

The "Submit" event (or transition) essentially
contains a guard condition.

If the form was not completed correctly (invalid),
then we will remain in edit mode and have to
make corrections

Conversely, if the guard condition is true (the
form is valid), then we will proceed with
transition to "Read" state/mode.

19

Transition Tables

A common mechanism for describing
transition diagrams clearly in text form

For each state, we write out:
the transition

what the next state will be

what action to perform (if any)

20

Transition table for turnstile

21

State Transition Next State Action

Locked

coin Unlocked unlock

pass Locked alarm

Unlocked

coin Unlocked thankyou

pass Locked lock

22

Agenda

A. Uncle Bob’s Turnstile

B. Finite State Machines Basics

C. What is SMC?

D.Solving Turnstile using SMC

E. SMC In Detail

F.Examples

SMC

SMC is a tool

that mates FSMs with Objects

23

SMC

An open-source project hosted on
sourceforge.net

http://smc.sourceforge.net/

Written by and maintained Charles Rapp

24

(continued)

SMC

Essentially:

“you put your state diagram in one file using an
easy-to-understand language. SMC generates the

State Pattern classes for you.”

25

SMC History

SMC is Robert Martin’s invention (it is discussed in
Robert’s book Agile Software Development (Ch 29))

Charles Rapp happened to have succeeded Robert
at Clear Communications Corporation.

He added many features, made design revisions, and
open-sourced the project (more information in the
preface of the SMC manual on sourceforge).

26

27

Agenda

A. Uncle Bob’s Turnstile

B. Finite State Machines Basics

C. What is SMC?

D. Solving Turnstile using SMC

E. SMC In Detail

F.Examples

Where were we?

Ah yes.. Issues with the State Pattern

1. The state logic is distributed across a number of
classes, and so there’s no single place to see it all

2. Tedious to write

(Notice: there’s nothing wrong with the design from the
point of view of the runtime implementation)

28

The .sm file
One place to see it all

%class Turnstile
%package turnstile

%start MainMap::Locked

%map MainMap
%%
Locked
{
 coin Unlocked { unlock(); }
 pass nil { alarm(); }
}
Unlocked
{
 pass Locked { lock(); }
 coin nil { thankyou(); }
}
%%

29

The Compiler
Generates the State Pattern code

java -jar Smc.jar -java -d turnstile Turnstile.sm

30

The SMC Compiler

Specify java language output

Optionally specify target directory

Specify the .sm file to process

Pictorially..

31

SMC
Compiler

Turnstile.sm TurnstileContext
.java

TurnstileContext$MainMap.class
TurnstileContext$MainMap_Default$MainMap_Locked.class
TurnstileContext$MainMap_Default$MainMap_Unlocked.class
TurnstileContext$MainMap_Default.class
TurnstileContext$TurnstileState.class
TurnstileContext.class

A single file is produced, but it contains many classes:

Write the AppClass

32

Define and instantiate “fsm”
context class (generated)

Expose transition calls to
other parts of application, if
necessary

Implement (or delegate)
actions

The AppClass

33

The term “AppClass” in SMC refers to a class you
write that is designated to interact with the
Context class that SMC generates

The actions you specify are assumed to be methods
defined in the AppClass

Pictorially..

34

SMC
Compiler

Turnstile.sm TurnstileContext
.java

Turnstile.java
(the AppClass)

<uses>

<uses>

The big picture

35

The context class invokes actions on the AppClass.
Conversely, the AppClass invokes transitions on the Context Class.

Details

Abstractions

<<interface>>

ITransitions

AppClassContext

<<interface>>

IActions

AppClass

Steps Review

1. Write the state diagram (.sm file)

2. Run the SMC tool (generates state pattern code)

3. Implement the actions (write the AppClass)

4. Interact with FSM by invoking transition methods

36

37

Agenda

A. Uncle Bob’s Turnstile

B. Finite State Machines Basics

C. What is SMC?

D.Solving Turnstile using SMC

E. SMC In Detail

F.Examples

38

SMC In Detail

1. Tool mechanics and project setup

2. SMC features in detail

3. SMC's design

1. Tool mechanics and project
setup

39

40

Project Setup

Separate directory gen for
generated source code

gen directory structure
mirrors src structure

bin directory contains the smc
tool (Smc.jar)

Ant target automatically
reruns SMC when .sm file
changes

Include statemap.jar in
runtime classpath

The Smc.jar command

java -jar Smc.jar -{targetlanguage}

 {options} {smfilename}.sm

Target languages:

c++, java, tcl, vb, csharp

table (generates HTML table representation of the .sm file)

graph (generates a GraphViz .dot file diagram of the state
machine logic

41

Smc.jar command options

java -jar Smc.jar -{targetlanguage}

 {options} {smfilename}.sm

Options:

-suffix (override output file name suffix)

-sync (e.g. for Java: add synchronized keyword to
transition method declarations)

-d (specify output directory)

-serial (generate serial IDs for states to allow persisting of
states)

-g (add debug output messages to generated source code)

42

Smc.jar command options

java -jar Smc.jar -{targetlanguage}

 {options} {smfilename}.sm

Options (continued):

-glevel (applies only to -graphviz output: specify level of
detail in the generation of .dot file diagram)

-version (prints smc version)

-help (prints help)

-verbose (generate verbose output during compilation
phase)

43

(continued)

Example

java -jar Smc.jar -graph

 -glevel 1 Turnstile.sm

44

Produces Turnsile_sm.dot,
which in Graphviz, looks

like this:

ant task and target

 <taskdef name="smc" classname="net.sf.smc.ant.SmcJarWrapper"
 classpath="lib/smc-ant.jar" />

 <target name="gen" depends="init">
 <smc target="java" smfile="${smfile}"
 destdir="${gen.pkg.dir}"
 smcjar="${smc.jar}" />
 </target>

 <target name="compile" depends="gen">
 <javac debug="on" deprecation="on"
 classpathref="class.path"
 destdir="${build.classes.dir}">
 <src path="${src.dir}" />
 <src path="${gen.dir}" />
 </javac>
 </target>

45

Important note about naming

In Java, it is possible to create a file for a class whose
name is different from the declared class name (in the
file)

In SMC:
the name of the file is derived from the name of the .sm file

the class name (in the file) is derived from the AppClass
name

Therefore:

make sure to always use the same name for both .sm
file and AppClass

46

2. SMC features in detail

47

Basic .sm file syntax

48

%class Turnstile
%package turnstile

%start MainMap::Locked

%map MainMap
%%
Locked
{
 coin Unlocked { unlock(); }
 pass nil { alarm(); }
}
Unlocked
{
 pass Locked { lock(); }
 coin nil { thankyou(); }
}
%%

The AppClass
Package name

The start state

States are grouped into Maps
Demarcates start of map

Demarcates end of map

Essentially a transition table}

Simple Transition

/* smc recognizes c-style comments */
// ..as well as c++ style comments

Idle
{
 Run Running {}
}

49

Idle Running

Run

Transition Next State Actions

Loopback Transition

Idle
{
 Timeout nil {}
}

Idle
{
 Timeout Idle {}
}

50

Transition Next State Actions

Idle

Timeout

or

Transition with Actions

Idle
{
 Run Running {
 StopTimer("Idle");
 DoWork();
 }
}

51

Transition Next State Actions

Idle Running

Run /
StopTimer("Idle")
DoWork()

Transition Guards

Idle
{
 Run [ctxt.isValid()] Running {
 StopTimer("Idle");
 DoWork();
 }

 Run nil { RejectRequest(); }
}

52

Transition Next State Actions

Idle Running

Run [IsValid()] /
StopTimer("Idle")
DoWork()

Run /
RejectRequest()

Notes on transition guards

Guard condition must evaluate to a boolean. Guard may
contain ||, &&, comparison operators (>, ==, etc..) or it can be
a method invocation

If guard condition is a method invocation on the AppClass, then
prefix invocation with "ctxt."

e.g.: ctxt.isValid()

Transitions with guards have higher precedence than
unguarded transitions

There's also a default / fallback transition mechanism that we'll
discuss shortly

53

Transition Arguments

LoggedOut
{
 onLogin(username: String, password: String)
 [ctxt.isLocked(username)]
 nil { displayLockedDlg(); }

 onLogin(username: String, password: String)
 [ctxt.authenticate(username, password)]
 LoggedIn { setupUser(username); }
 ..
}

54

Transition Next State Actions

LoggedOut
LoggedIn

onLogin(uname, pwd)
[authenticate(uname, pwd)] /
setupUser(uname)

onLogin(uname, pwd)
 [isLocked(uname)] /
displayLockedDlg()

Entry & Exit Actions

LoggedIn
Entry { dismissLoginDialog(); }
Exit { clearUser(); }
{
 onLogout LoggedOut {}
}

55

Transition Next State Actions

LoggedIn

Entry { dismissLogin() }
Exit { clearUser() }

Push and Pop Transitions

SMC allows the definition of multiple maps.
Each map should contain related states.

The idea is that you can use push and pop
transitions to move across maps.

56

Push Transition Example

Running
{
 Blocked push(WaitMap::Blocked) {GetResource();}
}

57

"GetResource()" is invoked and the state changes to
"Blocked," defined in WaitMap. SMC pushes (remembers)
the existing state on the state stack (internal).

Pop Transition Example

Waiting
{
 Granted pop(OK) {}
 Denied pop(FAILED) {}
}

58

The "Granted" transition causes the state stack to pop and
thus to revert to the state that the FSM was in prior to the
push. The "OK" transition then takes place in that state.

The Default State

You may define a state named "Default" and specify
transitions for it.

These transitions serve as "fallback" transitions for
all the other states.

That is, if you omit defining a transition in a certain
state and that transition takes place, then SMC will
fall back to calling the Default state's transition
(assuming it's defined there)

59

Default State Example

60

Locked
{
 pass nil { alarm(); }
}
Unlocked
{
 coin nil { thankyou(); }
}
Default
{
 coin Unlocked { unlock(); }
 pass Locked { lock(); }
}

Can define default behavior of turnstile in "Default"
state and override default behavior (exceptions) in Locked and
Unlocked states, like so:

Default Transitions

Yet another level of fallback can be defined as the
"Default" transition within a state.

If a state S does not define a transition T and the
"Default" state does not define one either, then T
will be handled by S's "Default" transition.

Default transitions can be defined on the Default state

61

3. SMC's design

62

63

The SMC Pattern

TurnstileContext
MainMap_Default

TurnstileState

MainMap

MainMap_LockedMainMap_Unlocked

(standard code, in statemap.jar)

(generated code)

64

Agenda

A. Uncle Bob’s Turnstile

B. Finite State Machines Basics

C. What is SMC?

D.Solving Turnstile using SMC

E. SMC In Detail

F.Examples

Where do FSMs apply in
software development?

65

Generic GUI Uses / Examples

Generally, anything modal:
Application Login Protocol

Wizards (follows a series of steps from start to finish) and
Paging

Associating by picking from a list

list can be in "pickable" state, where it exposes a "pick"
transition, that triggers an action that performs the
association of the selected item with some other object

GUI manifestation of the object life cycle: Create / Read /
Update / Delete

e.g.: in Edit state, the object exposes "Save" and "Cancel"
transitions. In Read state, it might expose "Edit" and
"Delete" transitions.

66

Login Protocol
LoggedInState
Entry { dismissLoginDialog(); }
Exit { clearUser(); }
{
 onLogout LoggedOutState {}
}

LoggedOutState
Entry { showLoginDialog(); }
{
 onLogin(username: String, password: String)
 [ctxt.isLocked(username)]
 nil {displayLockedDialog();}
 onLogin(username: String, password: String)
 [ctxt.authenticate(username, password)]
 LoggedInState { clearBadAttempts(username); setupUser(username); }
 onLogin(username: String, password: String)
 [ctxt.tooManyBadAttempts(username)]
 nil { lock(username); displayLockedDialog(); }
 onLogin(username: String, password: String) nil { loginInvalid(); }
}

67

Another login implementation

68

Application-Specific GUI Uses

Think about GUI apps such as Photoshop or the GIMP, where
each tool you pick puts you into a different mode (brush,
eraser, selection tool, etc..)

Further, within each mode, you can have sub-modes. For
example, the "selection" tool in photoshop is modal. The first
click which starts a selection has a different behavior
compared to the second, which completes it. The UI reflects
this: after the first click (transition), we're enter selection
mode (state). In this mode onmousemove (transition) triggers
the action to redraw a dashed rectangle, but stay in that mode.
Another transition, "onclick" will take it back out of selection
mode. The exit action is to record the selection.

69

App-Specific GUI Uses

Enabling and disabling GUI features in an application based
upon whether those features are applicable (valid transitions)
in the existing application state.

Example: in Keynote, unless I pick some text, the text
inspector remains disabled

70

Network code

General: Disconnected, Connecting,
Connected, Disconnecting states

File transfer: connect, send data, disconnect

71

Parsers

SMC is great for finding patterns in
character streams

Detecting tokens such as words, numbers,
whether we're inside comments, etc..

As the tokenizer reads the text stream, it enters
and leaves different states (inside comment,
outside comment) and fires transitions (detected
token)

72

A Comment Stripper

73

PerhapsLeaving
{
 slash NormalState { }
 asterisk nil {}
 other InComment { }
}
InComment
{
 slash nil {}
 asterisk PerhapsLeaving {}
 other nil {}
}

NormalState
{
 slash PerhapsEntering { }
 asterisk nil { outputit(); }
 other nil { outputit(); }
}

PerhapsEntering
{
 slash nil { outputit(); }
 asterisk InComment { }
 other NormalState { outputwithslash(); }
}

%%

Comment Stripper Driver

74

Anything with a user interface

Turnstiles, Coke machines, Gumball
machines, ATMs

75

Business Objects

A Visit can be scheduled, confirmed, in
progress, or complete

A Bill can be outstanding, partially paid, or
paid

An Order can be placed, partially filled,
filled, shipped

76

Wrapping up..

77

78

Current Status of Project

SMC project is mature / stable

Current version is v3.2

(latest addition is the production of Graphviz
diagrams from a .sm file)

Expect ant task to be bundled with the next
release

79

Conclusions

SMC is a simple tool that can be used repeatedly to
solve a specific category of problems that occur
frequently in various domains in software
development

SMC offers a "best of both worlds" solution to
Finite State Machine problems:

1. The design advantages of the State Pattern without the tedium
of writing the state classes

2. View and edit the entire finite state machine logic in a single file

80

References

1. Design Patterns

by Gamma, Helm, Johnson, & Vlissides

2. Agile Software Development
by Robert Martin

3. SMC Project
http://smc.sourceforge.net/

(maintained by Charles Rapp)

81

Q&A

82

Contact

Eitan Suez
eitan@u2d.com
UptoData, Inc.
http://u2d.com/

Please remember to complete evaluation forms.

83

Fin

